

Welcome to genopt’s documentation!

	Introduction

	Demonstrations
	Getting started

	Setup BPMs, correctors and reference orbit

	Setup variables

	Setup optimization engine

	Run optimization

	After optimization

	API
	genopt package

PDF documentation: Download

Indices and tables

	Index

	Module Index

	Search Page

Introduction

genopt is a python package, trying to serve as a solution of general
multi-dimensional optimization. The core optimization algorithms employed
inside are mainly provided by DAKOTA, which is the brief for
Design Analysis Kit for Optimization and Terascale Applications,
another tool written in C++.

The following image illustrates the general optimization framework
by properly utilizing DAKOTA.

[image: ../_images/dakota-sys-workflow_2.png]
To apply this optimization framework, specific analysis drivers should
be created first, e.g. flamedriver1, flamedriver2… indicate the
dedicated executable drivers built from C++, for the application in
accelerator commissioning, e.g. FRIB.

[image: ../_images/dakota-genopt-framework.png]

Note

flame is an particle envolope tracking code developed by C++,
with the capbility of multi-charge particle states momentum space
tracking, it is developed by FRIB; flamedriver(s) are
user-customized executables by linking the flame core library
(libflame_core.so) to accomplish various different requirements.

The intention of genopt is to provide a uniform interface to do the
multi-dimensional optimization tasks. It provides interfaces to let the
users to customize the optimization drivers, optimization methods,
variables, etc. The optimized results are returned by clean interface.
Dedicated analysis drivers should be created and tell the package to use.
DakotaOC is a dedicated class designed for orbit correction for
accelerator, which uses flame as the modeling tool.

Demonstrations

Here goes some examples to use genopt package to do orbit correction,
it should be noted that the more complicated the script is,
the more options could be adjusted to fulfill specific goals.

	Getting started

	Setup BPMs, correctors and reference orbit

	Setup variables

	Setup optimization engine
	Method

	Interface

	Responses

	Environment

	Model

	Run optimization

	After optimization
	Get optimized results

	Get orbit data

	Get new optimized lattice file

Getting started

This approach requires fewest input of code to complete the orbit
correction optimization task, which also means you only has very few
options to adjust to the optimization model. Hopefully, this approach
could be used as an ordinary template to fulfill most of the orbit
correction tasks. Below is the demo code:

import genopt

latfile = 'test_392.lat'
oc_ins = genopt.DakotaOC(lat_file=latfile)

oc_ins.simple_run(method='cg', mpi=True, np=4, iternum=20)

get output
oc_ins.get_orbit(outfile='orbit.dat')

plot
oc_ins.plot()

The lattice file used here could be found from
here, or from https://github.com/archman/genopt/blob/master/lattice/test_392.lat.

For this approach, the following default configuration is applied:

	Selected all BPMs and correctors (both horizontal and vertical types);

	Set the reference orbit with all BPMs’ readings of x=0 and y=0;

	Set the objective function with the sum of all the square of orbit deviations w.r.t. reference orbit.

By default, conmin_frcg optimization method is used, possible options
for simple_run() could be:

	
	common options:

	
	mpi: if True, run in parallel mode; if False, run in serial mode;

	np: number of cores to use if mpi is True;

	echo: if False, will not generate output when optimizing, the same for run();

	
	gradient descent, i.e. method=cg:

	
	iternum: max iteration number, 20 by default;

	step: forward gradient step size, 1e-6 by default;

	
	pattern search, i.e. method=ps:

	
	iternum: max iteration number, 20 by default;

	evalnum: max function evaulation number, 1000 by default;

There are two options for DakotaOC maybe useful sometimes:

	workdir: root directory for dakota input and output files

	keep: if keep working files, True or False

After run this script, beam orbit data could be saved into file, e.g.
orbit.dat:

which could be used to generate figures, the following figure is a typical
one could be generated from the optimized results:

[image: ../../_images/oc_x0y0.png]

Setup BPMs, correctors and reference orbit

For more general cases, genopt provides interfaces to setup
BPMs, correctors, reference orbit and objective function type, etc.,
leaving more controls to the user side, to fulfill specific task.

Here is an exmaple to show how to use these capabilities.

import genopt

lattice file
latfile = 'test_392.lat'
oc_ins = genopt.DakotaOC(lat_file=latfile)

select BPMs
bpms = oc_ins.get_elem_by_type('bpm')
oc_ins.set_bpms(bpm=bpms)

select correctors
hcors = oc_ins.get_all_cors(type='h')[0:40]
vcors = oc_ins.get_all_cors(type='v')[0:40]
oc_ins.set_cors(hcor=hcors, vcor=vcors)

setup objective function type
oc_ins.ref_flag = "xy"

setup reference orbit in x and y
bpms_size = len(oc_ins.bpms)
oc_ins.set_ref_x0(np.ones(bpms_size)*0.0)
oc_ins.set_ref_y0(np.ones(bpms_size)*0.0)

run optimizaiton
oc_ins.simple_run(method='cg', mpi=True, np=4, iternum=30)

get output
oc_ins.get_orbit(outfile='orbit.dat')

plot
oc_ins.plot()

The highlighted code block is added for controlling all these
abovementioned properties.

Warning

	BPMs and correctos are distinguished by the element index, which
could be get by proper method, e.g. get_all_cors();

	The array size of selected BPMs and reference orbit must be the same;

	bpms, hcors, vcors are properties of DakotaOC instance.

Warning

All elements could be treated as BPMs, see set_bpms(), set pseudo_all=True
option will use all elements as monitors.

Note

Objective functions could be chosen from three types according to the value
of ref_flag:

	ref_flag="xy": \(\sum \Delta x^2 + \sum \Delta y^2\)

	ref_flag="x": \(\sum \Delta x^2\)

	ref_flag="y": \(\sum \Delta y^2\)

where \(\Delta x = x - x_0\), \(\Delta y = y - y_0\).

Setup variables

By default the variables to be optimized is setup with the following
parameters:

	initial value

	lower bound

	upper bound

	1e-4

	-0.01

	0.01

However, subtle configuration could be achieved by using set_variables()
method of DakotaOc class, here is how to do it:

Parameter could be created by using DakotaParam class, here is the code:

set x correctors
hcors = oc_ins.get_all_cors(type='h')[0:40]

set initial, lower, upper values for each variables
n_h = len(hcors)
xinit_vals = (np.random.random(size=n_h) - 0.5) * 1.0e-4
xlower_vals = np.ones(n_h) * (-0.01)
xupper_vals = np.ones(n_h) * 0.01
xlbls = ['X{0:03d}'.format(i) for i in range(1, n_h+1)]

create parameters
plist_x = [genopt.DakotaParam(lbl, val_i, val_l, val_u)
 for (lbl, val_i, val_l, val_u) in
 zip(xlbls, xinit_vals, xlower_vals, xupper_vals)]

plist_y could be created in the same way, then issue set_variables()
with set_variables(plist=plist_x+plist_y).

Note

The emphasized line is to setup the variable labels, it is recommended
that all parameters’ label with the format like x001, x002, etc.

Setup optimization engine

The simplest approach, (see Getting started), just covers detail
of the more specific configurations, especially for the optimization engine
itself, however genopt provides different interfaces to make customized
adjustment.

Method

DakotaMethod is designed to handle method block, which is essential
to define the optimization method, e.g.

oc_method = genopt.DakotaMethod(method='ps', max_iterations=200,
 contraction_factor=0.8)
other options could be added, like max_function_evaluations=2000
oc_ins.set_method(oc_method)

Interface

DakotaInterface is designed to handle interface block, for the
general optimization regime, fork mode is the common case, only if
the analysis driver is compile into dakota, direct could be used.

Here is an example of user-defined interface:

bpms = [10,20,30]
hcors, vcors = [5, 10, 20], [7, 12, 30]
latfile = 'test.lat'
oc_inter = genopt.DakotaInterface(mode='fork',
 driver='flamedriver_oc',
 latfile=latfile,
 bpms=bpms, hcors=hcors, vcors=vcors,)
set interface
oc_ins.set_interface(oc_inter)

Note

Extra parameters could be added by this way:
oc_inter.set_extra(deactivate=”active_set_vector”)

Responses

Objective function(s) and gradients/hessians could be set in
responses block, which is handled by DakotaResponses class.

Typical example:

oc_responses = DakotaResponses(gradient='numerical', step=2.0e-7)
oc_ins.set_responses(oc_responses)

Environment

Dakota environment block could be adjusted by instantiating class
DakotaEnviron, e.g.

datfile = 'dakota1.dat'
e = genopt.DakotaEnviron(tabfile=datfile)
oc_ins.set_environ(e)

tabfile option could be used to define where the dakota tabular data
should go, will not generate tabular file if not set.

Model

DakotaModel is designed to handle model block, recently, just use
the default configuration, i.e:

oc_ins.set_model()
or:
m = genopt.DakotaModel()
oc_ins.set_model(m)

Run optimization

If running optimization not by simple_run() method, another approach
should be utilized.

generate input file for optimization
oc_ins.gen_dakota_input()

run optimization
oc_ins.run(mpi=True, np=4)

Below is a typical user customized script to find the optimized correctors
configurations.

import os
import genopt

""" orbit correction demo
"""
latfile = 'test_392.lat'
oc_ins = genopt.DakotaOC(lat_file=latfile,
 workdir='./oc_tmp4',
 keep=True)

set BPMs and correctors
bpms = oc_ins.get_elem_by_type('bpm')
hcors = oc_ins.get_all_cors(type='h')[0:40]
vcors = oc_ins.get_all_cors(type='v')[0:40]
oc_ins.set_bpms(bpm=bpms)
oc_ins.set_cors(hcor=hcors, vcor=vcors)

set parameters
oc_ins.set_variables()

set interface
oc_ins.set_interface()

set responses
r = genopt.DakotaResponses(gradient='numerical',step=2.0e-5)
oc_ins.set_responses(r)

set model
m = genopt.DakotaModel()
oc_ins.set_model(m)

set method
md = genopt.DakotaMethod(method='ps',
 max_function_evaluations=1000)
oc_ins.set_method(method=md)

set environment
tabfile = os.path.abspath('./oc_tmp4/dakota1.dat')
e = genopt.dakutils.DakotaEnviron(tabfile=tabfile)
oc_ins.set_environ(e)

set reference orbit
bpms_size = len(oc_ins.bpms)
ref_x0 = np.ones(bpms_size)*0.0
ref_y0 = np.ones(bpms_size)*0.0
oc_ins.set_ref_x0(ref_x0)
oc_ins.set_ref_y0(ref_y0)

set objective function
oc_ins.ref_flag = "xy"

generate input
oc_ins.gen_dakota_input()

run
oc_ins.run(mpi=True, np=4)
#print oc_ins.get_opt_results()

get output
oc_ins.get_orbit((oc_ins.hcors, oc_ins.vcors), oc_ins.get_opt_results(),
 outfile='orbit.dat')

plot
#oc_ins.plot()

The following figure shows correct the orbit to different reference orbits.

[image: ../../_images/oc_015.png]

After optimization

Suppose all the optimized results have been generated, here are the
possible post-operations:

	Operations on the optimized Machine object;

	Generate new lattice file with optimized results for other programs.

Optimization snippet:

latfile = 'test_392.lat'
oc = genopt.DakotaOC(lat_file=latfile)
oc.simple_run(iternum=20)

Get optimized results

Optimized results could be retrieved by get_opt_results() method of
DakotaOC class:

	return type: list

>>> r = oc.get_opt_results(rtype='list')
>>> print(r)
[0.00013981587907,
 7.5578423135e-05,
 -5.3982438406e-05,
 -1.9620020032e-06,
 0.00017942079806,
 ...
 2.0182502319e-05,
 0.0001173634281,
 8.685656753e-05,
 7.3950720611e-05,
 8.2924283647e-05]

The returned list is alphabetically sorted according to the
variables’ names.

	return type: dictionary, label format: plain

>>> r = oc.get_opt_results()
>>> # or
>>> r = oc.get_opt_results(rtype='dict', label='plain')
>>> print(r)
{'x001': 0.00013981587907,
 'x002': 7.5578423135e-05,
 'x003': -5.3982438406e-05,
 'x004': -1.9620020032e-06,
 'x005': 0.00017942079806,
 ...
 'y056': 2.0182502319e-05,
 'y057': 0.0001173634281,
 'y058': 8.685656753e-05,
 'y059': 7.3950720611e-05,
 'y060': 8.2924283647e-05}

	return type: dictionary, label format: fancy

>>> r = oc.get_opt_results(label='fancy')
>>> print(r)
{'FS1_BBS:DCH_D2412': {'config': {'theta_x': 0.00021066533055}, 'id': 1048},
 'FS1_BBS:DCH_D2476': {'config': {'theta_x': 0.00025833402592}, 'id': 1098},
 ...

This is the more comprehensive way to represent the results, one of the
advantages is that results with this format could be easily to apply on to
reconfigure method of Machine object, for instance:

>>> for k,v in r.items():
>>> m.reconfigure(v['id'], v['config'])

Note

get_opt_results has outfile optional parameter, if not
defined, output file that generated by current optimization
instance would be used, or the defined dakota output file would be used,
but only valid for cases of label='plain';
label='fancy' is only valid for
the case of rtype='dict'.

Get orbit data

get_orbit() could be used to apply all the optimized results, then
new Machine could be get in the following way:

>>> z,x,y,m = oc.get_orbit()
>>> print(m.conf(1224)['theta_x'])
8.5216269467e-05

Or in another way:

>>> oc.get_orbit()
>>> m = oc.get_machine()

New machine m could be used for the next operations.

Note

get_orbit() could be assigned a optional parameter: outfile,
into which the plain ASCII data of zpos, x, and y would
be saved.

Get new optimized lattice file

get_opt_latfile() is created to generate new lattice file with
optimized results, for the sake of possible next usage of asking for
lattice file, this is kind of more general interface.

>>> oc.get_opt_latfile(outfile='opt1.lat')

Here is the links to the lattice files of
original and
optimized ones, both could be
used as the input lattice file of flame program.

Note

generate_latfile()
in module genopt.dakutils
could be used to generate lattice file from flame.Machine object.

API

	genopt package
	Submodules
	dakopt module

	dakutils module

genopt package

Submodules

	dakopt module

	dakutils module

genopt.dakopt module

genopt.dakutils module

Index

genopt

	genopt package
	Submodules
	dakopt module

	dakutils module

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/oc_x0y0.png
Yo [mm]

Beam Orbit

_15|[F 0 Aferoc
O -0 Before OC

0 20 40

O 4O After OC h
60115 o Before oC by
_800 20 40 60 80 100 120 140

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to genopt’s documentation!

 		
 Introduction

 		
 Demonstrations

 		
 Getting started

 		
 Setup BPMs, correctors and reference orbit

 		
 Setup variables

 		
 Setup optimization engine

 		
 Method

 		
 Interface

 		
 Responses

 		
 Environment

 		
 Model

 		
 Run optimization

 		
 After optimization

 		
 Get optimized results

 		
 Get orbit data

 		
 Get new optimized lattice file

 		
 API

 		
 genopt package

 		
 Submodules

_images/dakota-sys-workflow_2.png
analysis_driver
callback mode: fork

input/output file @ executable [dakota directive

_images/oc_015.png
120 140 160

100

40

- original
— oc-Omm

— oc-lmm
—— oc-5mm

—15H

—200

_images/dakota-genopt-framework.png
apply optimal configuration

YES.

ejep Ad buipasy -

ptimization
pythonjmodule

general o

